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l. Introduction 35
i
A real valued stochastic process X = {X(t),t €T} on an arbi- J!
v,'».
trary index set T is called stable if every finite linear combina- x,:
It iy
n'(. ]
. tion Zajx(tj) has a stable distribution, e.g. Feller [1,VI.1l]. paty!
P!,
During the past two decades there has been a considerable amount ]
YL
.~.-
of interest in stable processes, in part because they are a Rl
natural generalization of Gaussian processes. Some of the stable ;iﬁﬁ
oy
n
results are identical to the corresponding Gaussian ones, some are ..
k]
Yy
guite different. In this paper we are concerned with the continu- e
£,
. '
ity problem for stable processes: when does X have a version with \;
e
continuous paths. .
In this paper, only real, symmetric, separable p-stable pro- i':
l‘. (]
cesses, 0 <p <2, on a compact metric or pseudo-metric space (T,T) hite)
o
are considered. Such processes always have a stochastic integral 9 _
) representation [2]: f?'
el
:‘ :
(1.1) X(t) = [f(t,W)W_(du), N
u ®
ey,
where (U,U,m) is some sigma-finite measure space, f:T xU +IR 1is n
v
a function with the property that for each t «T, f(t,*) eLp(U,U,m), A
x
o
and wm is the p-stable noise generated by m. Conversely, given [
l";
any (U, U,m) and any kernel f(t,u) with {f(t,*),t T} CLP(U,U,m), ﬁ:
e
(l.1) defines a p-stable process X. It is a basic fact (2, p. 386] fﬁ'
s
. that the joint characteristic function of X is given by ()
. . N
. ' . h‘.“:
(1.2) Eexp(i } a.X(t.)) = exp(-|| ) a.f(t.,-)!lpp ). N
j=1 3 3 j=1 3 3 L® (U, U, m) AN
N ..')
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2
Therefore if g(t,u') is any other representation for X with
{g(t,*),t ¢eT} a subset of some Lp(U’,U',m'),
) ) '
(1.3) I a.f(t.,*) || = || a.glt.,*)|]| .
j=1 3 3 LP(u,u,m) j=1 17 3 tFw,ur,m)

Since such norms (quasi-norms when 0 <p <1) are independent
of the representation (l1.1l), we may use the expression

HZan(tj)]lp for the terms in (l1.3). Note that in the Gaussian

_ 2 _ 1
case (p =2), llZan(tj)ll2 = EVar(Zan(tj)). »
Let X and Y be p-stable processes, 0 <p <2, and suppose ;
g0 . A
.e. th t £
]z =1 JX(t )|[ e (n) || % =1 JY(t )ll e. the ratio of both gx

sides 1is bounded above and below by a flnlte, positive number

1@ |
PR,

c(n) that depends only on n. At least for a large class of pro-

O
£

7

cesses, this last condition forces the paths of X and Y to have

.;--;’1

A\
3

the same iegree of irregularity, e.g. [7, Section 4] and {8, Cor-

[ 4
B
-

ollary 3.4]. 1In the Gaussian case, it also forces X and Y to

L
'.',-’ i

be mutually continuous or discontinuous, but when p<2 this is

5

not the case [7, (3.8)]. So the continuity problem is more subtle

L)

2

':,'. 5

when p <2 than in the Gaussian case.

_,
Py

Py
st

Rosinski [9] has shown that the paths of X are related to

o i

the paths f(*,u), ueU, of the kernel in (l.1l). An apparent

el ]

difficulty with this is the non-uniqueness of representations.

P
v

[N
P

Under the separability assumption, it is always possible to take

o
il

‘:
L4

the unit interval with Lebesgue measure as our base space, but

..{1 Py

A4

we have no idea what the kernel function is or how it relates to

P

other representations. Or, if we start with a particular kernel

and define X through (1l.1), what can other representations look

A A A NN N D NS N, PN ‘.r'(.'*" J‘ff.fd'ffff~rfff . ~....'
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like? Theorem 5.1 of [9] shows that there is a lot of rigidity

in the possible representations. We combine this result with

P

earlier work of Marcus and Woyczynski [{6] and Marcus and Pisier

(41, [5].

In Section 2 the continuity problem is solved when 0<p<1.

, ".-" 'l ‘*
Lol

’

Necessary and sufficient conditions are given fo: continuity in
terms of any (every) representation (1.1) as part of a more
general result showing there is a trichotomy on what kind of
trajectories stable processes possess when 0<p<l. Section 3
considers the cases when 1 < p < 2. We extend the sufficiency
results for continuity in terms of metric entropy and conditions

on any representation. A conjecture is made for the complete

..r "r':

solution, i.e. the correct stable analog of the Dudley-Fernique

" g

Theorem for Gaussian processes. We end with necessary and

sufficient conditions for path continuity in terms of continuity

RN, )

at a point in Section 4.
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2. Continuity and boundedness when 0 <p <1.
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Let X be a p-stable process and consider some representation

(1.1) of X with kernel f(t,u). We'll say fo(t,u) is a version or

Z

modt fication of f(t,u) if for all t T, fo(t,°) =f(t,*) m-a.e. on

U. Then X, = (X,(t) =[ f,(t,u)W_(du)} is a version of X by (l.3).
Define two conditions on the kernel f (t,s):

(Cl) f has a version fO such that for every u U, fo(-,u)

is in C(T).

(C2) f£*(u) =sup |f(t,uw)| is in P(u,u,m).
teT

(By sup|f(t,u)| we shall mean sup |f(t,u)]|, where T, T is a
teT teT0

countable separant for X that is dense in (T,71).)

In [10], we showed that if (Cl) holds, then Itd and Nisio's
[ 3] results on oscillation functions generalize to p-stable
processes. This gives detailed information about what kind of
paths such processes can have, but it does not give conditions

on when those paths are continuous or bounded, nor indicate what

A
2
L] f:
X
%
Fa
-

"~

v

happens when (Cl) does not hold.

l’ Fon |
."-‘,‘-

The next theorem resolves these questions when 0 <p <l. One

ot
’

?;f

surprising aspect of this is that there is no difference between

PP
\.\.

the stationary and nonstationary case, unlike the Gaussian situa-

o
o

tion. When 1l <p <2, the situation is more complex and like the

NN

cepe

Gaussian case, as we'll see in Section 3.

%

V?ﬁ.

A
»

Theorem 1. Let X be a real, symmetric, scparable p-stable pro-

.
| A
AP

«

cess, 0 <p <1l, on a compact metric or pseudo-metric space (T,71).

,....
'.l'
P

(1) X has a version with a.s. continuous sample paths if and

<
B, o, A
SAAE
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only if (Cl) and (C2) hold for some (every) representation (l.l).

(ii) X has a version with a.s. unbounded sample paths if and only
if (C2) fails to hold for some (every) representation (lL.l).
(iii) X has a version with a.s. discontinuous, bounded sample

paths if and only if (Cl) fails to hold and (C2) does hold for

some (every) representation (l.1).

0"
2 )

YA YR g
b

Proof: (i) Suppose (Cl) and (C2) hold for some representation

Y

LY
A

LA,

(l1.1). Let fo be a version of f guaranteed by (Cl) and set

22l e
s

}

2
Il

{u eU:f(tj,j) #fo(tj,u) for some tj «Ty

o -

{u eU:f(tj,j) #fo(tj,u)}.

. By NN
:'??45?

il
W c 8

j=1

This is a m-null set since f0 is a version of f£f. Thus for u ¢N, jiéf
%)

o

f6(u) = suplfo(tj,u)l = suplf(tj,u)\ = f*(u). o
J J °

aw

.,
%
a

Hence (C2) implies fa eLp(U,U,m) also. Since f0(°,u) is in C{(T), o
this says EE
. = £* p °
HEg ol oppy = £5@) LU, U m). e
Y,
o
Now by Marcus and Woyczynski [ 6], Xy = {foo(t,u)W(du)} has a.s. Q;
f'\-:
continuous paths. A
o
Conversely, Theorem 5.1 of Rosinski [9] shows that X having ?;q
)l
Aty
a continuous version implies (Cl) holds for every representation. :3,
N
Furthermore, a corollary to Rosinski's theorem shows that a ver- ni
: 9.
sion fo of f satisfies (C2), i.e. fa st(U,U,m). The above argu- DR
A
ment shows f* =f* m-a.e., so (C2) holds for f also. ;}}
7
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" O\
o{
">
(ii) By Theorem 6.2 of Samorodnitsky [11], (C2) is equivalent i
to X having a version with bounded paths when 0 <p <1. Again ;
this result does not depend on the representation chosen. ﬁ
o
(1ii) Follows from (i) and (ii). ) )
Y
The method o©of proving Theorem 1l (i) applies to other Banach
A
On

spaces besides C(T). For example, let 4 be any pseudo-metric

on T that is continuous with respect to 1, and define the possibly

XX

infinite function on C(T):

[ ]
. 3
[ .‘
[£(s) -£(¢) ] o
£ Lipa) Sup aE,s) )
S,teT o
Y
. . . L
| Pick any t, «T and let Lip(d) = {f cC(T):llfllLip(d) »}, This iﬁ
o,
| is a Banach space with norm E“f
\ ()
£ = |f YL+ I f 3“'
H H = (to i I HLlp(d)- !'
o
Rephrasing (Cl) and (C2) in terms of Lip(t) instead of C(T) gives ﬁf
PN,
e
necessary and sufficient conditions for X to satisfy a Lipschitz 4
L

condition.

R
s

Corollary 2. Let X be as in Theorem 1. X has a version with iﬂ

r_:

paths in Lip(Tt) a.s. if and only if for some (every) representa- i

[ ]

. -

, tion (1.1) N
f:‘-
(Lip(1) -1) f(t,u) has a version £,(t,0) with f£,(-,u) «Lip(1) o

for every u, e

4 s

an N

e

P

Lid(1) - LE (e, . P . o

(Lid(1) -2) ey Wil i) € L7, Um o

7

i,\

®
Y,
)
o0

N
o

)

[ ]
]
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3. Continuity when 1 sp <2. ,-';_
AN
We now consider the cases when 1 <p <2. Let d be a metric ;
H . . 'N
¥ or pseudo-metric on T and let g be the dual index of p, i.e. ﬁ}
¥ _ _ s
‘R p 1 +qg 1 =1. The d-metric entropy is defined in the standard way: ﬁ}
[ -":
) for ¢ >0 <5
1‘ 1/9 }:
; (logN(d;<)) 2 <g <= &
H (d;e) = <
q + 'S
log logN(d;e) q = o
)
where N(d;c) =N(T,d;¢e) =minimum number of d-balls of radius ¢ with :t‘
A -~
: centers in T that cover T. fi
P o
A particular pseudo-metric that is naturally associated with :
X a stable process X is ﬁﬁ
; :; !
- _ L
! a, (t,5) = (-log[Eexp (i(x(t) -X(s))1)1/P -
'
= Hf(t,’)-f(S,')H D . "'::
LY (U,U,m) N
g The last equality comes from (1l.2) and shows that dX and ::-
Hq(dx;z) are independent of which representation (l.l) we are L‘
gt
" . . :\
considering. AN
Theorem 3. Let X = {X(t),t «T} be a real, symmetric, separable 'i:
)
p-stable process, 1 <p <2 on a compact metric or pseudo-metric -
space (T,71). :}
. (i) If X has a version with a.s. continuous paths, then (Cl) 'ﬁ
)
and (C2) hold for every representation (l.l). Furthermore, when w3
'.-
f -
" ) p > 1 .:;-
. r
' (dyie) = 0 -
lim eH ie) = C e
e+l q X '
.»::
'.N
LA
f':
L {~
).
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(1i) Assume (Cl) and (C2) hold for some representation (l.1l) of

rrc e raw
LSyt

X and that f:Hq(dx;e)de <o, If £, is a version of f satisfying

0
¥ (Cl) and

%o T e T

A (3.1) m(du) < =,

. P
f[lfo( ’u)llLip(dX)

then X has a version with continuous sample paths.

(3]

Before proving Theorem 2, we would like to state the follow-

wy R
ST
'

ing conjectures.

-

Conjecture l. Condition (3.1l) can be dropped in Theorem 3 (ii),

x

i.e. (Cl), (C2) and f:H (dx;e)de <» imply X has continuous paths. i;

] d s
Conjecture 2. Assume T is a locally compact abelian group and X !_

by

')

is stationary. X has a.s. continuous paths if and only if (Cl), ¢:

‘e

"

(C2) and ngq(d ;£)de <= for some (every) representation.

A A
»

X

. -

Both conjectures are true for harmonizable processes (random Lo

Fourier transforms) by [4], where (Cl) and (C2) are automatic.

Counterexamples showing I:Hq(dx;e)ds <» is not sufficient for ;\
continuity, e.g. Remark 1.7 [4], do not take (Cl) and (C2) into :f
account. If X{t) is stationary sub-Gaussian, i.e. X(t) =Zl/2Y(t) ;f

i?

where Z is a (p/2)-stable positive r.v. and Y(t) is stationary

»
Gaussian, then X is continuous when and only when Y is continuous, 55
-
which occuis when and only when fzﬂz(dx;g)dg <, not ES
[:Hq(dx;z)de <®, Initially, this seems to doom the above con- {:
jectures. However, Hardin [2] shows that one representation for }

'v'n”/"t

sug-Guassian processes is to use the paths of Y(t) as the kernel

e

in (l1.1), i.e.

W
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X(t) = [¥(t,w)W,{dw).
2

For this representation, (Cl) requires that Y is a.s. continu-
ous, which is equivalent to the correct f§H7(dX;e)de <w, So the

conjectures are plausible.

Proof of Theorem 3: (i) As in Theorem 1 (i), (Cl) and (C2)

hold for every representation. Theorem 2.6 of (4] shows

llm“H (d ;2) =0 when p > 1.
£+

(i1) Let f0 be the version of the kernel f that satisfies (Cl)
and (3.1). We will show that Xy f (t uyw (du}) has a con-
tinuous version. First we note that (Cl) and (C2) imply
dx(t,s) -0 as T(t,s) -0. This is so because (Cl) implies
fO(t,u) »fo(s,u) as 1(t,s) -0 for each u, and

£,(t,u) —fo(s,u)f < 2f*(u), so (C2) and a dominated convergence
argument show dX(t,s) =(fff(t,u) -f(s,U){pm(du))l/p >0 as

t(t,s) =06. Thus it suffices to show X is a.s. continuous with
respect to dx' The remainder of the proof follows from Proposi-

tion 4, which also gives a modulus of continuity. _

The next result is basically Theorem 3 (ii) with dx replaced
by an arbitrary d. We are indebted to Professor Gennady
Samorodnitsky for pointing ocut that this generalization was im-
plicit in the original proof of Theorem 3.

We define a few more terms. For 2 <g <=, & >0 and a pseudo-

metric d on T, the metric entropy integral on (0,¢) 1is

.' RS x\‘- S
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The d-diameter of T is d= sup d(s,t). Define for v >0,
s,teT

P
»

PRSI

P

L4

( v(log+1og(l/V))

-,

o _(v) = ;

q | vilogtlogtlog(1/v)) g == -
i o
i For real random variables Y in the weak L_ _ spaces, we will use the ?
i P -
a function Ap(Y) =sup(ApP(lYl >A))l/p. Nt
o '

A>0

For the rest of this section, (T,d) will be the pseudo-metric !

space of concern, not the original (T,T) we've dealt with so far.

In particular, C(T) stands for functions that are continuous with .

respect to d; hence, (Cl) should be interpreted in this sense. !

Proposition 4. Let X = {X(t),t ¢T} be a real, symmetric, separa- ;2
5 ¥
ble p-stable process, 1l <p <2, on a compact metric or pseudo- Py

)
metric space (T,d). Assume (Cl) and (C2) hold for some repre- e
[} a R .
- - ¥
N sentation (1.1), that J_(d;¢) <= for some § >0 (p Ligtt =y <
) and that for a version fO of the kernel guaranteed by (Cl), .:

b l/p
! K(p,d) = ([|| £.(,u) | % m(du) ) < w,
.‘ g 0 Lip(4)

N

K Then X has a version Y with a.s. continuous (with respect to d) i
)

: sample paths satisfying ot
.

= o (. sup lY(S) -Y(t)]) < c(p)K(p,d)[J_(d;3) +d¢_(4/4d)] =

» d(s,t)<é d d S

A

S,t<T

« "
PR

for some constant c(p) depending only on p.

" -l'

I‘A.l" l{

\ Proof: Let fo be a version of the kernel f that satisfies our

hypothesis. We will define a normalized representation in terms
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ﬁ of fo. Pick any hl ¢ C(T) with !lhl (T 1 and define a new 3
R >
kernel
N
., hy () g ti=0 ¥
Al . ¥
3 h(+,u) = fo(',u) e,
' otherwise,
T £, )l :
;
9 -
: and a new measure ’
g F)
-~ , = 1! . P )
u (du) 1,f0( ,u)liC(T)m(du).
y N,
' Then Y(t) =,U)ﬂt u)w (du) is a version of X because of (l1.3). \
’f The representation in terms of h is normalized in that it has :
5 y
. the following properties: f
4 (3.2) h(*,u) is continuous for every u. f
»
fny ¢ WY
b (3.3) LU = [ E (+,w) 1B m(du) < = by (C2) A
. [ O ’ ‘C(T) .
W U :
¢ ~
" ~
(3.4) h*(u) = |ih( 'u)"C(T) = 1, hence h* eLp(U,U,h) by (3.3). i
1* >
J (d;%8) < =
, (3.5) q( ) i
‘ -
(3.6) [hie,w P, u(du) < o v
5 g Lip (d) 4
>
o since for each u, -
\, )
L) | :
= ! . N r . L
- LR w o) = HHEQ U s p )/ Eg o) T ;
Wy \
. and u(du) = fo( su) fi E(T) (du). In fact, the integral (3.6)1is iy
' L%
k exactly K(p,d). Taking (3.2)-(3.5) together we can induce a =3
o -
finite measure v on the boundary of the unit ball of C(T). A >
[} ~
- technical point is to verify that . is indeed a measure on the
o I
W "
o g
) &)
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correct sigma-field, i.e. the Borel sets on C(T). Since the ;:
-
Borel sets on C(T) coincide with the cylindrical sigma-field on b
C(T) (see the discussion at the beginning of Section 5 of [9]), Ty
it suffices to show the measure makes sense on cylinders of the bf,
[] -h
form C = {g eC(T):(g(tl),---,g(tn)) eBn}, where Bn ¢ Borel (IR™). ok
o
For such sets, {u ¢U:h(*,u) ¢eC} = {u eU:(h(t,u),...,h(t_,u)) eBn} ey
L9
P
"
is a U-measurable set since each h(tj,u) is measurable in u. Q;‘
Sy
Next we claim that we can assume v is symmetric. If it isn't =*
then look at its symmetrization v* =v*y, This is equivalent to ?ﬁ.
' W
looking at the measure induced on C(T) by {h(*,ul) -h(-,uz) e U xU} %ﬁ
with product measure u xup. This corresponds to a representation 2*'
14
for Y* =Y -Yl, where Yl is an independent copy of Y. Since Y was ;$
L,

symmetric to start with, Y* EY and we may as well take v to be

tric. oot

symmetric °
We now have a finite, symmetric measure v on the boundary of Q$<

)

)

the unit ball of C(T). Let Mv be the p-stable noise generated by ﬁ:
e

. on C(T) and define R
4
2(t) = [ x(£)M (a&x) o
C(T) | o:
3

as in the discussion preceeding Theorem 1.6 of [5). This is a ;‘
A
version of X also. Condition (3.5) is unchanged and condition §Fx
oy

(3.6) can be rephrased as R
l\‘

D

(3.7) [ 1ix||P v (dx) < . .
c(T) Lip(4d)

Now apply Theorem 1.6 of [5] to conclude that Z, and hence X, has
a version with continuous paths. (Note that [5] left out the

condition (3.%) in the statement of their theorem.)

(]

X
NN N Y <3
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g 4. Path continuity and continuity at a point ﬁ,
3
! A Gaussian process with continuous covariance is path continu- ;
: )
v ous if and only if it is continuous at each point. The stable :a
¥ 0
' \
! analog follows. S
; [4 :
b ;
' Theorem 5. Let X = {X(t),t «¢T}, be a p~-stable metric or pseudo- >
; metric space (T,T1), 0<Kp< 2. Then X is path continuous if and only 1if ;
) -~
4 (Cl) holds for some (every) representation and X is continuous 2
at each point. f
a o]
K Proof: Necessity is straightforward using Theorems 1 and 3. ;ﬂ
5 o
\ Sufficiency follows by assuming (Cl) for some representation. Y
3 N
: Then the oscillation function [10] of X is nonrandom. It is zero .
i e
at a point t if and only if X is continuous at t. If X is g
0 o
6' . continuous at each t, then the nonrandom oscillation function is N
A
identically zero and the process is path continuous. = )
- X
', &Y
s In this result and in the oscillation function results of [10], N
,
.
? (Cl) plays the role that the continuous covariance condition ;
o
o plays in the Gaussian case. Perhaps (Cl) is the correct general- 5}
1 \
ization of continuous covariance, not simply that dX is continu- 5”
Y
; ous. Recall from the proof of Theorem 3.2, (Cl) and (C2) implies r:
§ L&
dx is continuous with respect to 7. E
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